
POS
INSECURITY
A C A S E S T U D Y

OH T H E PO S S I B I L I T I E S

A N I N - D E P T H R E V I E W O F P O I N T - O F - S A L E
S Y S T E M I N S E C U R I T Y

V E R S P R I T E S E C U R I T Y

R E S E A R C H

POINT-OF-SALE
SYSTEM & PCI-DSS
The use of Point-Of-Sale systems can be seen in industries such
as retail, hospitality, food service, apparel, grocery, automotive,
etc. Any time you swipe a card to make a purchase or utilize a
self-checkout kiosk, a Point-Of-Sale system is responsible for
handling the intricacies of your transaction in the background.

Given the delicate nature of Point-of-Sale, security standards
have been created to protect consumers from malicious actors.
The Payment Card Industry Data Security Standard (PCI-DSS) is
an information security standard for organizations that handle
credit and debit cards issued by major credit card firms [].

The standard was created to increase controls over cardholder
data. The Payment Application Data
Security Standard (PA-DSS), which was created by the Payment
Card Industry Security Standards Council (PCI-SSC), dictates
that software vendors who develop payment applications must
follow a set of best practices to protect cardholder data [].
However, evidence shows that these standards are not enough
to completely thwart the threat of card data compromise. A
glossary of terms may be found at the end of the post.

1

2

https://versprite.com/security-offerings/grc/regulatory-compliance/#PCI
https://versprite.com/
https://www.pcisecuritystandards.org/document_library?category=pcidss
https://www.pcisecuritystandards.org/document_library?category=padss

RESEARCH INTO THE
STATE OF CARD DATA
Our research into the state of card data within a cardholder data
environment (CDE) revealed the following:

1. Data is not always encrypted in transit
 ○ Track data is not encrypted in transit to the payment
terminal, allowing for the success of “skimming”.
 ○ The PA-DSS standard dictates that payment applications
“encrypt sensitive traffic over public networks”. However, there is
no such requirement for data internal to the CDE.

2. Data is partially encrypted at rest
 ○ According to the PA-DSS, only the PAN requires encryption
at rest. Cardholder names, service codes, and expiration dates
may be available in clear-text.
 ○ Sensitive authentication data such as full track data,
CAV/CVC/CVV/CID numbers, and PINs are forbidden from
storage, even if encrypted.

3. Data is rarely encrypted in memory
 ○ The PA-DSS standard recommends that developers create
“secure payment applications”. Unfortunately, it does not
specifically suggest any secure coding practices, placing the
impetus of understanding upon the developer.
 ○ Despite attempts at safely handling PCI data in memory,
RAM scraping remains a viable method for retrieval.

https://versprite.com/security-offerings/grc/regulatory-compliance/#CDE
https://versprite.com/

As one might expect, attackers have found ways to exploit the
inconsistent state of data protection in POS systems, resulting in
a plethora of large-scale breaches. On March 2, 2018, RMH
Franchise Holdings, an Applebee’s franchisee, revealed that
they had identified “unauthorized software” on their POS systems
that “was designed to capture payment card information” []. As
an indicator of how far-reaching this compromise was, RMH
Franchise Holdings owns 167 locations in 15 states. It is unknown
at this time how many of the locations were affected by the
breach.

Additionally, on November 14, 2017, Forever21 reported a
payment card security incident involving POS malware that
“searched only for track data read from a payment card as it
was being routed through the POS device”. The earliest evidence
of infection dated back to April 3, 2017, indicating dwell time of
over 7 months [].

In order to better understand how difficult it is for attackers to
compromise these networks, we decided to enumerate the
attack surface of a simplified CDE.

ATTACK SURFACE

The customer’s initial interaction with a merchant’s POS system
begins at point-of-interaction (POI) devices. This includes POS
terminals and PIN pads. Some vendors such as Verifone,
Ingenico, and PAX offer advanced POI solutions. This is where
your cardholder data makes first contact with the POS system.
As transit from a card’s magnetic stripe to POI is not encrypted,
this is a hot target for card skimmers. Each of these devices also
includes an underlying operating system capable of running

3

https://versprite.com/
https://www.forever21.com/protecting_our_customers/default.aspx

POS software, introducing additional attack surface.

The next stop for your PII is the POS terminal software.
There are thousands of different applications
available to merchants for managing their POS needs.
Popular POS software include POS solutions offered by
Oracle ’s subsidiary, MICROS Systems, as well as NCR’s
AlohaPOS. POS software is responsible for manipulating
sensitive cardholder data into payment transaction
requests. The real possibility of insecure application
configurations or improper handling of sensitive data
coupled with the fragmented POS application landscape
make this a very interesting component of the attack
surface.

The systems hosting POS software have proven to be very
lucrative targets for malware authors. They primarily run
operating systems such as Windows Desktop, Windows
Server Edition, or Windows POSReady. This means that
attackers may use well-known techniques to exploit and
compromise these targets. Although heavily monitored
and rarely left unattended, these systems are often
physically accessible to the public. An attacker could
potentially leverage physical access to one of these
systems in order to gain initial access to the CDE, thus
using it as a starting point for lateral movement
throughout the CDE. One of the areas of interest to an
attacker is the POS database server.

POS database servers are responsible for storing
cardholder data as well as other forms of PII.

https://versprite.com/

These servers pose the same risks as database servers in
most other environments. In addition, a POS database
server compromise may violate the integrity of dependent
applications. Some POS software solutions offer a
managed POS database solution hosted in the cloud. This
black box solution poses risks of its own. The merchant
must trust this third-party to properly segment customer
data and potentially defend against cloud infrastructure
attacks such as “rowhammer” or “spectre" [,].

The final egress point for transaction data is from POS
payment servers upstream to payment processors.
Although there is support for Linux, payment processor
applications are primarily supported on the Windows
platform. An observant attacker may be able to monitor
outbound traffic in order to deduce payment gateway
address and attack it directly. Such attacks would affect
a much larger number of cardholders, as payment
processors handle transactions from multiple merchant
CDEs.

In 2008, Heartland Payment Systems suffered a breach
that resulted in the compromise of 100 million cards.
Global Payments also suffered a serious breach in 2011
that affected an estimated 1.5 million payment cards in
North America []. As you can see, the obscurity of
payment processor specifications does not result in their
security.

Although attack surface enumeration reveals potential
points of vulnerability, it remains a theoretical
perspective. In order to understand how this attack

4 5

6

https://versprite.com/
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://meltdownattack.com/
https://krebsonsecurity.com/2012/05/global-payments-breach-now-dates-back-to-jan-2011/

surface translates to the real world, we decided to take a
look at multiple POS malware samples and their
functionality. Apparently, POS malware is not special in
terms of initial infection vectors; phishing, brute force
attacks, and credential theft shine in popularity. What
makes POS malware different is their post-exploitation
objectives. In an attempt to steal credit card data from
compromised hosts, POS malware includes either RAM
scraping or a keylogging functionality.

BlackPOS is a very popular example of RAM scraping
malware. A variant of this BlackPOS was responsible for
the devastation seen in the Target breach. After the
attacker accesses the sensitive data, there remains the
trouble of data exfiltration. Some malware families, such
as Dexter, choose to exfiltrate over HTTP. The more recent
UDPoS malware family employs DNS exfiltration for
additional stealth. Overall, POS malware does not appear
to have evolved much since its discovery around 2008.
This suggests that the risk model for POS systems has not
yet changed significantly enough for cyber criminals to
adapt new techniques.

RESEARCH FOCUS

Following the enumeration of this attack surface and POS
malware analysis, we decided to audit various freeware
and software trials for validated PA-DSS compliant POS
applications. PCI SSC maintains a list of thousands of
validated POS solutions. The applications we reviewed
primarily support the POS EPS Deployment Model as
described by Gomzin in “Hacking Point of Sale” (1st ed.,
pg. 45) []. 7

https://versprite.com/
https://www.amazon.com/Hacking-Point-Sale-Application-Solutions-ebook/dp/B00IA1NRKQHacking

Our research revealed a multitude of concerns regarding
the secure development of payment applications. We
found a POS software application using a custom
authentication algorithm which was easy to reverse
engineer.

The product had an authentication override system, in
which you were required to contact the vendor to receive
a proper override code in order to authenticate. The
problem was in the way the product implements its
override code generation algorithm. This algorithm was
easily reverse engineered and could be used to
continually generate valid authentication codes which
would allow an on-site attacker to access the

COMMON
MISCONFIGURATIONS
IN POS SOFTWARE

https://versprite.com/
https://versprite.com/blog/payment-terminal-security/

administrative functionality of the POS. Not only would
this allow an attacker full access to personally
identifiable information, it would also give the attacker
the ability to open up the cash drawer.

Another issue we found was the use of hard-coded
credentials in applications. These could be easily reverse
engineered and is a grave mistake in the software
engineering discipline. We found an example of this in a
POS product. The product contained hard-coded
credentials for its backend database system, which
contained PII, such as customer, order, and partial credit
card information.

Additionally, processes should run with the least amount
of privileges necessary. If an application is running with
elevated privileges and the attacker can leverage a flaw
in said application to execute code, then the attacker
would have the same access to the system as those
elevated privileges would allow. We were able to run our
own elevated code in a few instances

Finally, only allow write access to files and directories to
the user accounts that need it. With write access to the
executable file as a low privileged user, we were able to
perform the attack that is laid out in our case study.

https://versprite.com/

RESEARCH FOCUS

A large portion of the payment applications we looked at
were implemented in Java. This made for trivial analysis,
as Java bytecode may be decompiled quite accurately.
These applications are also quite susceptible to
tampering by a malicious actor. This becomes even more
concerning when payment applications are installed with
improper file permissions.

We found one such validated payment application that
allowed for any authenticated user to modify its
resources in whatever way they see fit. We decided to
implement a proof-of-concept attack chain to
demonstrate the capabilities an attacker could leverage
from this scenario. Although this may sound simple at a
high level, the struggles and headaches that we
encountered were very humbling as new security
researchers.

OUR ATTACK PLAN

1. Inject attacker implant code into the Payment
Application JAR from low privilege context

2. Modify a Java CLASS file within the Payment Application
JAR to launch our implant code

3. Demonstrate capabilities (Command Execution,
Persistence, RAM Scraping, Disinfection)

4. Report to vendor

https://versprite.com/

We developed a Java implant and Python command-
and-control server using Flask. The implant
communicates to the command-and-control server over
an encrypted channel and handles simple commands
such as command execution and file upload/download. It
also includes more advanced capabilities such as
persistence toggling, disinfection, and RAM scraping. The
implant CLASS uses the singleton design pattern to avoid
multiple instances. All of its functionality is also handled
outside of the payment application’s primary thread; if
the implant crashes, the application continues. We made
these design decisions in order to accurately portray the
types of capabilities that cyber criminals are using in the
wild, thereby gaining insights into how system
administrators and software developers can greater
protect their assets.

MEMORY DUMP/RAM SCRAPER

In this case, we observed through reverse engineering
that the POS application creates String objects for the
track data that is being processed by the POS application.
We just needed to learn how to get at that data. It is a
common tactic used by POS malware to search for CC
track data in the address space of the processes running
on a system. They use this approach because the CC
track data in memory can be read as clear text and can
be captured to be processed later. While malware
campaigns generally search through the address space
of all or most of the processes on the system, we wanted
to have a targeted approach when it came to the RAM
scraping capability.

https://versprite.com/

Our first thought was to just enumerate all of the memory
sections created by the operation system that were given
to the Java process, but this was not targeted enough.
One thing that we had to learn about was how the JVM
actually managed its memory internally, and we found
that the JVM handles multiple types of memory. The JVM
creates memory sections for its methods, thread stacks,
native handlers, and JVM internal data structures. The
only memory segment that we were interested was the
one that contained the JVM's heap memory. We came to
this conclusion because Java's heap memory is used to
store class object instantiations and instance variables
and would therefore contain the objects of interest. Now
in order to target objects on the JVM heap, we need to
leak an address of an object that is already allocated on
the heap.

Next we had to figure out how to leak an address of an
object that was allocated in the JVM heap, thus giving us
a target region of memory to scrape for our data of
interest. We found a solution that involved the use of a
relatively undocumented class. sun.misc.Unsafe is used
to gain access to low-level mechanisms that are intended
to be used by the core Java library. This was all new to us,
so we had to learn how to get access to the Unsafe class,
and we found that you have to use reflection in order to
gain access. This is because the Ùnsafe ̀constructor is
private, and the caller of the class factory method
getUnsafe() can only be called by the bootloader. With
reflection, you can get access to the field theUnsafe
which you have to set to accessible with the method call
- you guessed it - setAccessable(true). Now that all of
that is done, we can retrieve an instance

https://versprite.com/

of the Unsafe class via a method call to get(). Our first
battle was fought and won, but our journey was just
beginning.

>
.... Field theUnsafe = null; try { theUnsafe =
Unsafe.class.getDeclaredField("theUnsafe"); } catch
(NoSuchFieldException e) { e.printStackTrace(); }
theUnsafe.setAccessible(true); long objectAddress; …
Unsafe unsafe = (Unsafe) theUnsafe.get(null); String
oracle = "research”; Object[] objects = { oracle }; long
baseOffset = unsafe.arrayBaseOffset(objects.getClass());
....

Our next battle was that of dealing with Java’s Ordinary
Object Pointers (OOPs) and Compressed OOPs. The
system's architecture, the JRE's architecture, the amount
of memory available, and special JRE command line
arguments all help to determine how compressed OOPs
are used in a given environment. To ensure cross-
compatibility, we query this information from the current
runtime and decompress the pointer leaked by Unsafe
appropriately.

We used JNA to bridge C and Java as C would have more
powerful process memory capabilities. With our custom
code injected into the main POS JAR, we start making a
few native calls to set up our memory scraping tactic,
which is just a more targeted approach to what most
malware campaigns use. First, we make sure to get a
process handle to the process that we are running as.
This is done via calls to GetCurrentProcessID() and
OpenProcess(). GetCurrentProcessID() is used to get

https://versprite.com/

the process ID of the process that we are running as. That
process ID is passed into the call to OpenProcess() in
order for us to get our process handle. Now that we have
our process handle and our leaked Java heap address, we
can enumerate the Java heap memory segments via calls
to VirtualQueryEx(). The VirtualQueryEx() function
retrieves information about a range of pages within the
virtual address space of a specified process. For the
VirtualQueryEx() calls, we make sure that we actually
have access to memory regions returned by checking the
protect member of the MEMORY_BASIC_INFORMATION
structure. The protect member contains the protection
flags used by the memory region that we are querying for.

.... Payload lib = (Payload) Native.loadLibrary("payload",
Payload.class); DWORD pid =
Kernel32.INSTANCE.GetCurrentProcessId(); Pointer
pHandle =
Kernel32.INSTANCE.OpenProcess(PROCESS_VM_READ |
PROCESS_QUERY_INFORMATION, false, pid);
MEMORY_BASIC_INFORMATION mbi = new
MEMORY_BASIC_INFORMATION(); // Populate the
MEMORY_BASIC_INFORMATION structure with info from the
leaked address
Kernel32.INSTANCE.VirtualQueryEx(pHandle, new
Pointer(objectAddress), mbi, mbi.size()); long address =
Pointer.nativeValue(mbi.allocationBase); long
originalAllocBase =
Pointer.nativeValue(mbi.allocationBase); // Use the
allocation base address from the first query to walk all of
the regions that we interested in. while
((Kernel32.INSTANCE.VirtualQueryEx(pHandle, new
Pointer(address), mbi, mbi.size()) != 0) &&

https://versprite.com/

originalAllocBase ==
Pointer.nativeValue(mbi.allocationBase)) { if
((mbi.protect.intValue() & PAGE_NOACCESS) != 0 ||
(mbi.protect.intValue() & PAGE_GUARD) != 0) {
System.out.println("[!] Can't read this memory
segment."); ...

Then we are able to pass the leaked heap address to our
C code to proceed with memory scraping for credit card
track data.

System.out.println(lib.ScanProcessMemory(buffer,
mbi.regionSize.longValue()).getString(0));

Instead of searching through memory with a regular
expression, we used a byte-pattern search for the field
separators used in track 1 and track 2 data as defined by
the ISO/EIC 7813 standard, similar to the technique used
by the DexterPOS malware. The track 1 and track 2 data is
easily parsed by searching for the beginning/ending
sentinel values and field separators. Track 1 contains the
following sentinel values: “%” for the beginning sentinel,
“^” for the field separator, and “?” for the end sentinel. For
track 2 we have the following sentinel values: “;” for the
beginning sentinel, “=” for the field separator, and “?” for
the end separator. Once the credit card track data is
found and validated, it is sent back, as a native pointer, to
the backdoored Java client for further operations.

https://versprite.com/

Before we could hijack a CLASS file within the JAR file, we
had to determine which CLASS to target. Reviewing source
code generated through decompilation revealed an ideal
CLASS.

1. It is called near the very beginning of the application’s
start.

2. It is only method performs the very simple operation of
returning a version string.

3. It is called very often. This means that if our implant
thread dies for any reason, basic use of the application
will revitalize our foothold.

Our modifications to this CLASS included the code that
creates an instance of our implant class and starts the
thread prior to returning the version number. In addition,
we had to ensure our CLASS files are compatible with the

https://versprite.com/

JRE present on the targeted host. To make our implant
compatible with JRE 7, we kept the implementation of our
capabilities very simple. Following the modification of the
target CLASS, we use the JDK's jar utility to update the
target with the new and modified CLASS files.

Our next step was to automate the workflow of this attack.
We wrote an infector script in Ruby designed for
compatibility with the Metasploit Framework. The infector
generates a shared key to be used by both the command
and control server and the implant for initial
authentication. It then patches the command and control
server's hostname, port, and callback interval (as defined
within the Metasploit configuration) into the implant
CLASS file. Next, it registers the target host with the
command and control server, as unregistered hosts are
unable to communicate with implant endpoints. As we
compiled our CLASS files using JRE 9, the infector then
patches the implant CLASS files with the JRE version
number of the target payment application, infects a local
copy of the payment application JAR, stores a backup of
the original JAR on the command and control server, and
replaces the target hosts JAR with the infected copy. This
process happens within seconds and does not interrupt
the POS operator.

 automating the workflow of this attack.

At long last, we were victorious, but this victory was
bittersweet. It is hard to believe that with all of the
standards put into place by organizations such as PCI-
SSC, something like this was still possible.

Watch the video

https://versprite.com/
https://versprite.com/point-of-sale-case-study/

Attacks such as this may be prevented in several ways.
Ensuring that payment applications are configured with
reasonable file permissions would have stopped the this
attack chain in it's tracks. Our attack leveraged the fact
that weak file permissions allow to inject additional Java
code into the POS JAR file. Additionally, file integrity
monitoring software could be used to trigger alerts upon
the modification of critical files. The ideal preventative
measure would be to use P2PE such that payment
applications are never entrusted with cardholder data.

MITIGATIONS

FUTURE RESEARCH

Though the frequency of POS breaches has reduced in
recent time, POS systems remain a valuable target for
cyber criminals. With the increasing implementation of
secure countermeasures to attacks against POS systems
such as P2PE and EMV cards, attackers will likely migrate
to the next available path of least resistance. The
continuation of our POS security research will mirror the
attacker's approach in an effort to identify undisclosed
weakness in this vast attack surface. This has been quite
an exciting project which included many learning
opportunities.

https://versprite.com/

CAV: Acronym for “Card Authentication Value”. Data
element on a card’s magnetic stripe that uses secure
cryptographic processes to protect data integrity on the
stripe and reveals any alteration or counterfeiting.
CID: Acronym for “Card Identification Number”. See CAV.
CDE: Acronym for “cardholder data environment”. The
people, processes and technology that store, process, or
transmit cardholder data or sensitive authentication data.
Chip card: Also referred as “EMV card”, “Smart card”, or
“Chip and Pin card”. Card that stores its data on an
integrated circuit.
CVC: Acronym for “Card Validation Code”. See CAV.
CVV: Acronym for “Card Verification Value”. See CAV.
ISO/EIC 7813: An international standard codified by the
International Organization for Standardization and
International Electrotechnical Commission that defines
properties of financial transaction cards, such as debit or
credit cards.
JAR: Acronym for “Java Archive”. A file format used to
aggregate many Java class files, associated metadata,
and resources into one file for distribution.
Java class file: A file which contains Java bytecode that
can be executed on the Java Virtual Machine.
JDK: Acronym for “Java Development Kit”. A superset of
the Java Runtime Environment which contains tools for
Java programmers.
JNA: Acronym for “Java Native Access”. Provides easy
access from Java to things like the Windows API and
other external native shared libraries.

GLOSSARY

https://versprite.com/

JRE: Acronym for “Java Runtime Environment”. Is a
software package that contains what is required to run a
Java program. It includes a Java Virtual Machine
implementation and an implementation of the Java Class
Library.
JVM: Acronym for “Java Virtual Machine”. An abstract
computing machine that enables a computer to run a
Java program.
Merchant: An entity that accepts payment cards as a
form of payment for good and/or services.
P2PE: Acronym for “point to point encryption”.
Instantaneously encrypts payment card data at the time
the card is swiped.
PAN: Acronym for “primary account number” and also
referred to as “account number”. Unique payment card
number (typically for credit or debit cards) that identifies
the issuer and the particular cardholder account.
PII: Acronym for “personal identifiable information”.
Information that can be utilized to identify an individual,
including but not limited to name, address, Social Security
number, phone number, etc.
PIN: Acronym for “personal identification number”. Secret
numeric password known to the only to the user and a
system to authenticate the user to the system. The user is
only granted access if the PIN the user provided matches
the PIN in the system. Typical PINs are used for automated
teller machines for cash advance transactions. Another
type of PIN is one used in EMV chip cards where the PIN
replaces the cardholder’s signature.

https://versprite.com/

POI: Acronym for “point of interaction”. The initial point
where data is read from a card. An electronic
transaction-acceptance product, a POI consists of
hardware and software and is hosted in acceptance
equipment to enable a cardholder to perform a card
transition. The POI may be attended or unattended. POI
transactions are typically integrated circuit (chip) and/or
magnetic-stripe card-based payment transactions.
POS: Acronym for “point of sale”. Hardware and/or
software used to process payment card transactions at
merchant locations.
RAM Scraping: Also referred to as “memory scraping”. The
activity of examining and extracting data the resides in
memory as it is being processed or which has not been
properly flushed or overwritten.
Rowhammer: A hardware-based attack that leverages an
unintended side effect in dynamic random-access
memory that causes memory cells to leak their charges
and interact electronically between themselves, possibly
altering the contents of nearby memory rows that were
not addressed in the original memory access. Has been
used in some privilege escalation exploits.
Skimming: The crime of getting private information about
somebody else’s credit card used in an otherwise normal
transaction. Generally, this requires the use of a physical
device, often attached to a legitimate card-reading
device.
Spectre: A hardware vulnerability that affects modern
microprocessors that perform branch prediction. On most
systems, the speculative execution resulting from a
branch misprediction may leave observable side effects
that may reveal private data to attackers.

https://versprite.com/

Track Data: Also referred to as “full track data” or
“magnetic-stipe data”. Data encoded in the magnetic
stripe or chip used for authentication and/or
authorization during payment transactions. Can be the
magnetic-stripe image on a chip or the data on the track
1 and/or track 2 portions of the magnetic stripe.

REFERENCES

[1] Official PCI Security Standards Document Library -
PCI-DSS
[2] Official PCI Security Standards Document Library - PA-
DSS
[3] Forever 21 Reports Findings from Investigation of
Payment Card Security Incident
 [4] Exploiting the DRAM rowhammer bug to gain kernel
privileges
[5] Meltdown and Spectre
[6] Global Payments Breach Now Dates Back to Jan. 2011
[7] Point of Sale: Payment Application Secrets, Threats,
and Solutions, Gomzin 2014

https://versprite.com/
https://www.pcisecuritystandards.org/document_library?category=pcidss
https://www.pcisecuritystandards.org/document_library?category=padss
https://www.forever21.com/protecting_our_customers/default.aspx
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://meltdownattack.com/
https://krebsonsecurity.com/2012/05/global-payments-breach-now-dates-back-to-jan-2011/
https://www.amazon.com/Hacking-Point-Sale-Application-Solutions-ebook/dp/B00IA1NRKQHacking

